Муниципальное бюджетное учреждение дополнительного образования Центр Детского Творчества МР Гафурийский район Республики Башкортостан

Принята на педагогическом совете Протокол № 1 от 26.08. 2020 г.

Кинзябаев Рамиль

Подписан: Кинзябаев Рамиль Нигматзянович DN: ИНН=021902132948, СНИЛС=03019445719, E=roo.2013@inbox.ru, C=RU, S=Республика Башкортостан, L=Красноусольский, О=МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ЦЕНТР ДЕТСКОГО ТВОРЧЕСТВА МУНИЦИПАЛЬНОГО РАЙОНА ГАФУРИЙСКИЙ РАЙОН РЕСПУБЛИКИ БАШКОРТОСТАН, G=Рамиль Нигматзянович, SN=Кинзябаев CN=Кинзябаев Рамиль Нигматзянович Нигматзянович Основание: Я являюсь автором этого документа Местополжение: Место подписания

Дата: 2021.03.03 09:06:19+03'00' Foxit Reader Версия: 10.1.1

Утверждаю: И. о. директора МБУ ДО ЦДТ МР Гарурийский район РБ Р.Н.Кинзябаев

28. 2020 г. Приказ № Оот 26

Дополнительная общеобразовательная программа спортивно - технической направленности

«Юный робототехник»

Возраст обучающихся: 10-12 лет

Срок реализации: 1 год

Составитель: Соколов Иван Викторович, педагог дополнительного образования

Муниципальное бюджетное учреждение дополнительного образования Центр Детского Творчества МР Гафурийский район Республики Башкортостан

Принята на педагогическом совете	Утверждаю:		
Протокол № 1 от 26.08. 2020 г.	И. о. директора МБУ ДО ЦДТ		
	МР Гафурийский район РБ		
	Р.Н.Кинзябаев		
	Приказ № от 2020 г.		

Дополнительная общеобразовательная программа спортивно – технической направленности «Юный робототехник»

Возраст обучающихся: 10-12 лет

Срок реализации: 1 год

Составитель: Соколов Иван Викторович, педагог дополнительного образования

Пояснительная записка

Данная программа составлена в соответствии с требованиями Федерального Закона «Об образовании в Российской Федерации» № 273 — ФЗ от 29.12.2012 г. и Концепции развития дополнительного образования детей, утвержденная распоряжением Правительства РФ от 04.09.2014г. № 1726-р.

Она составлена в соответствии с общими учебно — воспитательными задачами и призвана содействовать всестороннему изучению обучающимися социально — демографических, экономических, правовых и политических особенностей родного края.

Одной из важных проблем в России являются её недостаточная обеспеченность инженерными кадрами и низкий статус инженерного образования. Данная проблема существует на фоне постоянно возрастающих потребностей в таких специальностях, как «Инженер-конструктор» и «Программист». Согласно анализу многих кадровых агентств и других исследователей рынка труда, спрос на инженерные специальности сохранится, и будет занимать ведущие позиции в рейтинге востребованности в перспективе 4-6 лет.

Необходимо вернуть массовый интерес молодежи к научно-техническому творчеству, и наиболее перспективный путь в этом направлении — это робототехника, позволяющая в игровой форме знакомить детей с наукой.

Робототехника является одним из важнейших направлений научно-технического прогресса, в котором проблемы механики и технического проектирования соприкасаются с областью высоких технологий и проблемами искусственного интеллекта.

По данным Международной федерации робототехники, прогнозируется резкое увеличение оборота отрасли. Интенсивное использование роботов в быту, производстве, медицине, военном деле и других сферах, требует высокий уровень умений и знаний не только от специалистов-разработчиков, но и от рядовых пользователей, которым придётся сталкиваться с управлением роботами ежедневно.

Изучение робототехники позволяет на практике рассмотреть многие темы из учебного предмета «Информатика и ИКТ», которые иногда встречают затруднения в ходе освоения основного курса. А именно, алгоритмизация и программирование, исполнитель, логика, основы устройства компьютера. Также данная программа обучения даст возможность обучающимся закрепить и применить на практике полученные знания по таким дисциплинам, как математика, физика и технология.

Робототехника ориентирована на работу в команде, что способствует формированию умения взаимодействовать с обучающимися, формулировать, анализировать, критически оценивать, отстаивать свои идеи.

Основной формой организации учебного процесса является занятия. Виды деятельности: активная лекция, выполнение проектов и исследовательских работ, работа осуществляется в группах, в парах и индивидуально с правом выбора вида деятельности. По результатам выполненной деятельности обучающиеся представляют готовый проект (готовая модель конструктора, составленная к ней программа с заданным алгоритмом действий и корректное выполнение этой программы роботом). Отметочная система оценивания результата не предполагается. По желанию обучающихся они готовят презентации по изучаемому материалу для размещения на сайте МБУ ДО ЦДТ, а также фото и видеоматериалы проектов.

Деятельность — это первое условие развития у обучающегося познавательных процессов. Чтобы ребенок активно развивался, необходимо его вовлечь в деятельность. Образовательная задача заключается в создании условий, которые бы провоцировали детское действие. Такие условия легко реализовать в образовательной среде LEGO.

Лего-конструирование — это вид моделирующей творческо-продуктивной деятельности. Диапазон использования ЛЕГО с точки зрения конструктивно-игрового средства для детей довольно широк.

Основным содержанием данной программы являются постепенное усложнение занятий от технического моделирования до сборки и программирования роботов с использованием материалов книги Д. Г. Копосова «Первый шаг в робототехнику».

Данная программа предполагает обучение решению задач конструкторского характера, а

также программированию, моделированию при использовании на уроках конструктора LEGO EV3 и программного обеспечения LEGO MINDSTORMS Education EV3.

Использование конструктора LEGO EV3 позволяет создать уникальную образовательную среду, которая способствует развитию инженерного, конструкторского мышления. В процессе работы с LEGO EV3 обучающиеся приобретают опыт решения как типовых, так и нешаблонных задач по конструированию, программированию, сбору данных. Кроме того, работа в команде способствует формированию умения взаимодействовать с соучениками, формулировать, анализировать, критически оценивать, отстаивать свои идеи. При дальнейшем освоении LEGO EV3 становится возможным выполнение серьезных проектов, развитие самостоятельного технического творчества.

Актуальность программы заключается в том, что он направлен на формирование творческой личности, живущей в современном мире. Наборы LEGO MINDSTORMS EV3 ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

Конструктор LEGO EV3 обеспечивает простоту при сборке начальных моделей, что позволяет обучающимся получить результат в пределах одной пары уроков. И при этом возможности в изменении моделей и программ — очень широкие, и такой подход позволяет учащимся усложнять модель и программу, проявлять самостоятельность в изучении темы. Программное обеспечение LEGO MINDSTORMS EV3 обладает очень широкими возможностями, в частности, позволяет вести рабочую тетрадь и представлять свои проекты прямо в среде программного обеспечения LEGO MINDSTORMS EV3.

При освоении данной программы желательны наличие у обучающихся знаний основ работы с компьютером, личностных качеств — таких как старательность, аккуратность, целеустремленность.

Используя персональный компьютер, LEGO-элементы из конструктора ребята могут конструировать управляемые модели роботов. Робот функционирует автономно, достаточно загрузить управляющую программу в специальный LEGO-компьютер и присоединить его к модели робота, EV3 работает независимо от настольного компьютера, на котором была написана управляющая программа; получая информацию от различных датчиков и обрабатывая ее, он управляет работой моторов.

Цель:

формирование культуры конструкторско-исследовательской деятельности и освоение приемов конструирования, программирования и управления робототехническими устройствами (базовый набор конструктора LEGO MINDSTORMS Education EV3).

Задачи:

Образовательные

- Использование современных разработок по робототехнике в области образования, организация на их основе активной деятельности обучающихся
- Ознакомление обучающихся с комплексом базовых технологий, применяемых при создании роботов
 - Реализация межпредметных связей с математикой

Развивающие

- Развитие у обучающихся инженерного мышления, навыков конструирования, программирования и эффективного использования кибернетических систем
 - Развитие мелкой моторики, внимательности, аккуратности и изобретательности
 - Развитие креативного мышления, и пространственного воображения обучающихся
- Организация и участие в играх, конкурсах и состязаниях роботов в качестве закрепления изучаемого материала и в целях мотивации обучения

Воспитательные

- Повышение мотивации обучающихся к изобретательству и созданию собственных роботизированных систем
 - Формирование у обучающихся стремления к получению качественного законченного

результата.

Место реализации программы: на базе МБУ ДО ЦДТ

Срок реализации: 1 год

Условия реализации программы: педагог должен иметь средне-специальное или высшее

педагогическое образование.

Ценностные ориентиры содержания программы

Общество находимся на пороге новой эры: персональный компьютер позволяет нам слышать и видеть, а в скором будущем и трогать предметы, путешествовать по всему миру, погружаться в глубины океана.

Бурно развивается новая отрасль промышленности - робототехника. Сегодня робототехника входит в нашу повседневную жизнь.

Роботы могут выполнять опасные ремонтные работы, управлять нефтепроводами, работать с вредными для человека веществами, диагностировать и лечить людей и т.п.

Роботы скоро станут привычными и доступными для нас, окажут большое влияние на процесс нашего обучения, работы, отдыха и общения.

В процессе изучения программы обучающиеся знакомятся с проблемами и вопросами, которые специалисты решают сегодня. Проводя исследования и выполняя задания, школьники узнают, как создавать программы для управления простыми и сложными роботизированными механизмами, приобретают общее представление об интереснейшей науке — робототехнике.

Личностные, метапредметные и предметные результаты освоения программы

В ходе изучения программы формируются и получают развитие метапредметные результаты, такие как:

- умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Личностные результаты, такие как:

- формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности.

<u>Предметные результаты</u>: формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете.

учебно-методического обеспечения образовательного процесса

Содержание программы представлено подборкой проектно-исследовательских задач для обучающихся. В процессе работы используется УМК, в составе которого: учебник-практикум Копосов Д. Г. Первый шаг в робототехнику. — М.: БИНОМ, Лаборатория знаний, 2014.,рабочая тетрадь; самоучитель (систематизированная подборка учебных материалов, представленная в программном обеспечении, где в увлекательной форме идет знакомство с обучающими программами LEGO MINDSTORMS Education EV3). Оборудование: компьютер с установленным ПО, набор лего-конструктора.

Все задания практикума — это те проблемы и вопросы, с которыми специалисты сталкиваются сегодня. Проводя исследования и выполняя задания, обучающиеся шаг за шагом узнают, как создавать программы для управления простыми и сложными роботизированными механизмами, приобретают общее представление об интереснейшей науке — робототехнике.

Планируемые результаты изучения программы

Регулятивные универсальные учебные действия

Обучающийся научится:

- целеполаганию, включая постановку новых целей, преобразование практической задачи в познавательную;
- самостоятельно анализировать условия достижения цели на основе учета выделенных учителем ориентиров действия в новом учебном материале;
 - планировать пути достижения целей;
 - устанавливать целевые приоритеты;
 - уметь самостоятельно контролировать свое время и управлять им;
 - принимать решения в проблемной ситуации на основе переговоров.

Коммуникативные универсальные учебные действия

Обучающийся научится:

- учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
- формулировать собственное мнение и позицию, аргументировать и координировать ее с позициями партнеров в сотрудничестве при выработке общего решения в совместной деятельности;
- устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;
- аргументировать свою точку зрения, спорить и отстаивать свою позицию не враждебным для оппонентов образом;
- задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнером;
- осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь.

Познавательные универсальные учебные действия

Обучающийся научится:

- основам реализации проектно-исследовательской деятельности;
- проводить наблюдение и эксперимент под руководством

учителя;

- осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
 - создавать и преобразовывать модели и схемы для решения задач;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

• объяснять явления, процессы, связи и отношения, выявляемые в ходе исследования.

Основы учебно-исследовательской и проектной деятельности

Обучающийся научится:

- планировать и выполнять учебное исследование и учебный проект, используя оборудование, модели, методы и приемы, адекватные исследуемой проблеме;
 - выбирать и использовать методы, релевантные рассматриваемой проблеме;
- распознавать и ставить вопросы, ответы на которые могут быть получены путем научного исследования, отбирать адекватные методы исследования, формулировать вытекающие из исследования выводы;
- ясно, логично и точно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме.

Формы контроля

- Проверочные работы;
- Практические занятия;
- Творческие проекты;
- Соревнования;
- Опросы;
- Обсуждения.

При организации практических занятий и творческих проектов формируются малые группы, состоящие из 2-3 обучающихся. Для каждой группы выделяется отдельное рабочее место, состоящее из компьютера и конструктора.

Преобладающей формой текущего контроля выступает проверка работоспособности робота:

- выяснение технической задачи,
- определение путей решения технической задачи

Контроль осуществляется в форме творческих проектов, самостоятельной разработки работ.

Методы обучения

- 1. Познавательный (восприятие, осмысление и запоминание обучающимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения материалов);
- 2. Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей)
- 3. Контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий)
- 4. Групповая работа (используется при совместной сборке моделей, а также при разработке проектов)

Формы организации учебных занятий

- занятие-консультация
- практикум;
- занятие-проект;
- занятие проверки и коррекции знаний и умений.
- выставка;
- соревнование;

Разработка каждого проекта реализуется в форме выполнения конструирования и программирования модели робота для решения предложенной задач.

Презентация группового проекта

Процесс выполнения итоговой работы завершается процедурой презентации действующего робота.

Презентация сопровождается демонстрацией действующей модели робота и представляет собой устное сообщение (на 5-7 мин.), включающее в себя следующую информацию:

- тема и обоснование актуальности проекта;
- цель и задачи проектирования;
- этапы и краткая характеристика проектной деятельности на каждом из этапов. Оценивание выпускной работы осуществляется по результатам презентации робота на основе определенных критериев.

Учебный план

№	Наименование разделов и тем	Всего часов	Виды контроля
1	Введение в робототехнику	2	Опрос, обсуждение
2	Знакомство с роботами LEGO Mindstorm EV3	35	Проверочная работа
3	Robot Educator, основные возможности	35	Соревнование, контрольное задание
4	Robot Educator, более сложные действия	35	Соревнование
5	Robot Educator, операции с данными Битва роботов	35	Соревнования моделей роботов. Презентация проектов
6	Итоговое занятие	2	
BCE	ΓΟ	144	

Календарно – учебный график

No॒	Название темы	Теоретич. занятия	Практич. занятия	Всего
				часов
	Тема 1. Введение в робототехнику.	2	-	2
1.	Вводное занятие. Что такое "Робот". Виды, значение в современном мире, основные направления применения. Состав конструктора, правила работы.	1	-	1
2.	Проект. Этапы создания проекта. Оформление проекта.	1	-	1
	Tema 2. Знакомство с роботами LEGO Mindstorm EV3.	15	20	35
3.	Ознакомление с визуальной средой программирования LabVIEW. Интерфейс. Основные блоки.	2	2	4

	T		T	T
4.	Обзор модуля EV3. Экран, кнопки	2	2	4
	управления, индикатор состояния,			
	порты.			
5.	Обзор сервомоторов EV3, их	4	-	4
	характеристика. Сравнение основных			
	показателей (обороты в минуту,			
	кругящий момент, точность).			
	= =			
	Устройство, режимы работы.	2	4	6
6.	Обзор датчика касания.	2	4	0
	Устройство, режимы работы.			
7.	Обзор гироскопического датчика.	2	4	6
	Устройство, режимы работы.			
8.	Обзор датчика света. Устройство,	2	4	6
	режимы работы.			
9.	Обзор ультразвукового датчика.	1	4	5
	Устройство, режимы работы.			
	Проверочная работа на тему:			
	"Характеристики и режимы работы			
	активных компонентов".			
	Tema 3. Robot Educator, основные	1	34	35
	возможности.	_		
10.	Сборка модели робота по	1	1	2
10.		1	1	
	инструкции. Основные			
	механические детали			
	конструктора и их назначение.			
11.	Движения по прямой траектории.	=	3	3
12.	Точные повороты.	-	3	3
13.	Движения по кривой траектории.	-	3	3
	Расчёт длинны пути для каждого			
	колеса при повороте с заданным			
	радиусом и углом.			
14.	Игра "Весёлые старты". Зачет	-	3	3
17.	времени и количества ошибок			
1.5			3	3
15.	Захват и освобождение "Кубойда".	_	3	3
	Механика механизмов и машин.			
	Виды соединений и передач и их			
	свойства.			
16.	Решение задач на движение с	-	3	3
	использованием датчика касания.			
17.	Решение задач на движение с	-	3	3
	использованием датчика света.			
	Изучение влияния цвета на			
	освещенность			
18.	Решение задач на движение с	-	4	4
10.	использованием гироскопического			
	_			
19.	Датчика.	_	4	4
17.	Решение задач на движение с	_		
	использованием ультразвукового			
20	датчика расстояния.		A	4
20.	Программирование с помощью	-	4	4
	интерфейса модуля. Контрольный			
	проект на тему: "Разработка сценария			
	движения с использованием			
	нескольких датчиков".			
	Тема 4. Robot Educator, более	14	21	35
	сложные действия.			

21.	Битва роботов	2	3	5
22.	Многозадачность. Понятие	2	3	5
	параллельного программирования.			
23.	Оператор цикла. Условия выхода	2	3	5
	их цикла. Прерывание цикла.			
24.	Оператор выбора (переключатель).	2	3	5
	Условия выбора.			
25.	Многопозиционный	2	3	5
	переключатель. Условия выбора.			
26.	Динамическое управление.	2	3	5
27.	Битва роботов	2	3	5
	Тема 4. Robot Educator, операции с	8	27	35
	данными Битва роботов			
28.	Шина данных, понятие,	2	7	9
	назначение			
29.	Сравнение значений показателей.	2	7	9
30.	Понятие переменной и массива.	2	7	9
31.	Битва роботов	2	6	8
32.	Итоговое занятие	2	-	2
	ИТОГО:	42	102	144

Содержание программы

№	К.	Тема	Практика	Блоки ПО
			Тема 1. Введение в робототехнику	
1	1	Что такое "Робот". Виды, значение в современном мире, основные направления применения. Состав конструктора, правила работы.	Просмотр видеороликов о применении роботизированных систем, в т.ч. LEGO Mindstorm. Ознакомление с комплектом деталей.	
2	1	Проект. Этапы создания проекта. Оформление проекта.	Изучение основ проектирования. Знакомство с понятием проект, целями, задачами, актуальностью проекта, основными этапами его создания. Научить учащихся оформлять проектную папку	
		Тема 2. 3	внакомство с роботами LEGO Mindstorm EV3.	
3	1	Ознакомление с визуальной средой программирования LabVIEW. Интерфейс. Основные блоки.	Распределение наборов по группам. Сортировка и раскладывание деталей. Ознакомление с рабочим местом (ноутбук + конструктор + руководство)	Краткое руководство (программирование, краткий обзор программирования), основы (настройка конфигурации блоков).
4	1	Обзор модуля EV3. Экран, кнопки управления, индикатор состояния, порты.	Установка батарей, способы экономии энергии. Написание и запуск программ по управлению модулем EV3.	Аппаратное обеспечение (звуки модуля, световой индикатор состояния модуля, экран модуля, кнопки управления модулем)

5	1	Обзор сервомоторов EV3, их	Соединение мотора с	Аппаратное обеспечение		
		характеристика. Сравнение	модулем.Программирование различных	(большой мотор, средний		
		основных показателей (обороты в	способов управления моторами. Проект	мотор)		
		минуту, крутящий момент,	"Секундомер".			
		точность). Устройство, режимы				
		работы.				
6	1	Обзор датчика касания.	Соединение датчика касания с	Аппаратное обеспечение		
		Устройство, режимы работы.	модулем. Программирование управления	(датчик касания)		
			модуля с помощью датчика. Проекты			
			"Количество			
			нажатий на дисплей", "Число нажатий за 5 секунд".			
7	1	Обзор гироскопического датчика.	Соединение гироскопического датчика	Аппаратное обеспечение		
		Устройство, режимы работы.	с модулем. Программирование управления	(гироскопический датчик), более		
			модуля с помощью датчика. Проекты	сложные действия (Скорость		
			"Равномерное кручение"	гироскопа)		
8	1	Обзор датчика света. Устройство,	Соединение датчика света с модулем.	Аппаратное обеспечение		
		режимы работы.	Программирование управления	(датчик цвета - цвет, датчик цвета		
			модуля с помощью датчика. Проекты	- освещение). Более		
			"Цветовой код", "Ночная дискотека"	сложные действия (датчик света		
				- калибровка), космические		
				проекты (калибровка датчика света)		
9	1	Обзор ультразвукового датчика.	Соединение ультразвукового датчика с	Аппаратное обеспечение		
		Устройство, режимы работы.	модулем. Программирование управления	(ультразвуковой датчик), более		
		Проверочная работа на тему:	модуля с помощью датчика. Проект	сложные действия (текст)		
		"Характеристики и режимы	"Дальнометр"			
		работы активных компонентов".				
	Tema 3. Robot Educator, основные возможности.					

10, 11	2	Сборка модели робота по инструкции. Основные механические детали конструктора и их назначение.	Сборка модели робота "Robot Educator".	Инструкции по сборке (приводная платформа)
12	1	Движения по прямой траектории.	Расчет числа оборотов колеса для прохождения заданного расстояния.	Основы (перемещение по прямой), Космические проекты (управляемые движения)
13	1	Точные повороты.	Запрограммировать робота выполнять повороты на требуемый угол	Космические проекты (точные повороты)
14	1	Движения по кривой траектории. Расчёт длинны пути для каждого колеса при повороте с заданным радиусом и углом.	Программирование различных поворотов с использованием блоков "Рулевое управление", "Независимое рулевое управление", "Большой сервомотор"	Основы (движение по кривой, независимое управление моторами)
15	1	Игра "Весёлые старты". Зачет времени и количества ошибок	Соревнование на скорость передвижения роботов до заданной точки и возвращения обратно	
16, 17	2	Захват и освобождение "Кубойда". Механика механизмов и машин. Виды соединений и передач и их свойства.	Сбор приводной платформы. Программирования захвата и перемещения объекта. Проект "Передача эстафеты".	Инструкция по сборке (Средний мотор - Приводная платформа), основы (переместить объект), космические проекты (обнаружение предмета)
18	1	Решение задач на движение с использованием датчика касания.	Присоединения датчика касания к модели. Программирование различных сценариев движения. Проекты "Столкновение", "У подножья обрыва".	

19	1	Решение задач на движение с	Присоединения датчика света к	Основы (остановиться у линии),
17	1	использованием датчика света.	модели. Программирование различных сценариев	космические проекты
			движения. Проект "У подножья обрыва"	(обнаружение цвета)
		Изучение влияния цвета на освещенность	движения. Проект у подножья оорыва	(оонаружение цвета)
20	1	Решение задач на движение с	Присоединения гироскопического	Основы (остановиться под
		использованием гироскопического	датчика к модели. Программирование различных	углом), космические проекты
		датчика.	сценариев движения.	(поворот при помощи датчика)
21	1	Решение задач на движение с	Присоединения датчика света к	Основы (остановиться у
		использованием ультразвукового	модели. Программирование различных сценариев	объекта)
		датчика расстояния.	движения. Проект "Плавная остановка"	
22,	2	Программирование с помощью	Программирование различных	Основы (программирование
23		интерфейса модуля. Контрольный	сценариев движения. Проект "Движение по	модулей)
		проект на тему: "Разработка	заданной траектории (квадрат, треугольник)"	
		сценария движения с		
		использованием нескольких		
		датчиков".		
24,	2	Битва роботов	Соревнования "Кегельринг", "Змейка".	
25			Зачет времени и количества ошибок.	
			4. Robot Educator, более сложные действия.	
26	1	Многозадачность. Понятие	Использование многозадачности для	Более сложные действия
		параллельного программирования.	перемещения приводной платформы и	(многозадачность)
			воспроизведения звука одновременно.	
27-29	3	Оператор цикла. Условия выхода	Создание и отладка программы с	Более сложные действия (цикл),
		их цикла. Прерывание цикла.	использованием блока цикла для повторения серии	космические проекты
			действий. Проекты "Зацикливание», "Движение по	(движение по линии)
			контуру"	
30-32	3	Оператор выбора (переключатель).	Использование блока переключения	Более сложные действия
		Условия выбора.	для принятия решений в	(переключатель)
			динамическом процессе на основании информации	
			датчика	
			l .	I .

33	1	Многопозиционный переключатель. Условия выбора.	Программирование приводной базы таким образом, чтобы она двигалась и поворачивала при обнаружении различных цветов. Проект "Определитель цвета"	Более сложные действия (многопозиционный переключатель), космические проекты (обнаружение и реагирование)
34	1	Динамическое управление.	Использование блоков датчика для управления мощностью моторов приводной платформы в динамическом режиме.	Более сложные действия (блоки датчиков)
35-37	3	Битва роботов	Соревнование "Змейка", "Кегельринг с цветоуправлением". Зачет времени и количества ошибок.	
		Ten	иа 4. Robot Educator, операции с данными Битва робо	OTOB
38	1	Шина данных, понятие, назначение	Самостоятельный эксперимент с тремя типами шин данных	Более сложные действия (шина данных)
39	1	Сравнение значений показателей.	Использование датчика цвета для включения моторов приводной платформы	Более сложные действия (сравнение)
40	3	Понятие переменной и массива.	Использование переменной и массива для хранения параметров движения робота. Проекты "Цветовой код", "Программируемые движения"	Более сложные действия (переменные), космические проекты (программируемые движения)
41-48	8	Битва роботов	Соревнования "Кегельринг", "Змейка". Проекты-задания "Перемещение по заданным координатам", "Движение по кривой (змейка, кольцо, восьмёрка)", "Чертежник", "Парковка", "Лабиринт", "Сканирование местности", "Объезд препятствий".	

СПИСОК ЛИТЕРАТУРЫ

Нормативно – правовое обеспечение

- 1. Федеральный закон РФ 273-ФЗ «Об образовании в Российской Федерации» от 29.12.2012 г.
- 2. Стратегия инновационного развития РФ на период до 2020 года, утвержденная распоряжением Правительства РФ от 08 декабря 2011г. №2227-р;
- 3. Стратегия развития воспитания в РФ на период до 2025 года, утвержденная распоряжением Правительства РФ от 29 мая 2015г., №996-р.;
- 4. Стратегическая инициатива «Новая модель системы дополнительного образования», одобренная Президентом РФ 27 мая 2015г.;
- 5. Приоритетный проект «Доступное дополнительное образование для детей», утвержденный Президиумом Совета при Президенте РФ по стратегическому развитию и приоритетным проектам (протокол от 30 ноября 2016г. №11);
- 6. Приказ Минобрнауки России от 23.08.2017г. №816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ» (Зарегистрировано в Минюсте России 18.09.2017г. № 48226);
- 7. Профессиональный стандарт «Педагог дополнительного образования детей и взрослых» (утв. Приказом Минтруда и социальной защиты РФ от 05 мая 2018г. № 298н, зарегистрирован в Минюсте РФ 28 августа 2018г., рег. №52016);
- 8. Приказ № 1309 от 09.11.2015г. «Об утверждении Порядка обеспечения условий доступности для инвалидов объектов и предоставляемых услуг в сфере образования, а также оказания им при этом необходимой помощи»;
- 9. СанПин 2.4.4.3172-14 «Санитарно эпидемиологические требования к устройству, содержанию и организации режима работы образовательныз организаций дополнительного образования детей»;
- 10. Приказ Минобрнауки России от 09.11.2018 г. № 196 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам";
- 11. Конвенция о правах ребенка;
- 12. Конституция Российской Федерации;
- 13. Трудовой кодекс РФ №197 $-\Phi$ 3 от 30 декабря 2001 года введен в действие с 01.02.2002 г.;
- 15. Правила пожарной безопасности в РФ (ППБ 01-03). Введены в действия приказом министерства РФ по делам Гражданской обороны. Чрезвычайных ситуаций и ликвидации стихийных бедствий от 18 июня 2013 года №313;
- 16. Концепция развития дополнительного образования детей, утвержденная распоряжением Правительства РФ от 04.09.2014г. № 1726-р;.
- 17. «Концепция духовно нравственного развития и воспитания гражданина России»;
- 18. «Примерная программа воспитания и социализация обучающихся»;
- 19. Конституция Республики Башкортостан;
- 20. Закон Республики Башкортостан от 1 июля 2013г. № 696-з «Об образовании в Республики Башкортостан».

Список литературы для педагога

- 1. Копосов Д. Г. Первый шаг в робототехнику. Практикум для 5-6 классов\ Д. Г.
- 2. Копосов. М.: БИНОМ. Лаборатория знаний, 2012 292 с.
- 3. Gary Garber. Learning LEGO Mindstorm EV3. М.: Книга по требованию, 2015 284 с.
- 4. Овсяницкая Л.Ю. Алгоритмы и программы движения робота Lego Mindstorms EV3 по линии. М.: Издательство «Перо», 2015. 168 с.
- 5. Овсяницкая Л.Ю. Пропорциональное управление роботом Lego Mindstorms EV3 по линии. М.: Издательство «Перо», 2014г.
- 6. Овсяницкая Л.Ю. Курс программирования робота LEGO Mindstorm EV3. М.: Издательство «Перо», 2013г.
- 7. Вязов С.М. Соревновательная робототехника: приёмы программирования в среде
- 8. EV3: учебно-практическое пособие
- 9. Бабич А.В., Баранов А.Г., Калабин И В. и др. Промышленная робототехника: Под редакцией Шифрина Я.А. М.: Машиностроение, 2002.
- 10. Вильяме Д. Программируемый робот, управляемый с КПК /Д. Вильяме; пер. с англ. А. Ю. Карцева. М.: НТ Пресс, 2006. 224 с; ил. (Робот своими руками).
- 11. Скотт Питер. Промышленные роботы переворот в производстве. М.: Экономика, 2007.
- 12. Фу К., Гансалес Ф., Лик К. Робототехника: Перевод с англ. М. Мир, 2010. Шахинпур М. Курс робототехники: Пер. с англ. М.; Мир, 2002.
- 13. Юревич Ю.Е. Основы робототехники. Учебное пособие. Санкт-Петербург: БВХ-Петербург, 2005.
- 1. mindstorms.lego.com
- 2. prorobot.ru
- 3. <u>legoengineering.com</u>
- 4. nxtprograms.com
- 5. robosport.ru
- 6. myrobot.ru
- 7. robofest2012.ru
- 8. arcticbot.robofund.ru

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575834 Владелец Васильева Ирина Александровна

Действителен С 30.09.2021 по 30.09.2022